Dynamics of nonequilibrium quasiparticles in a double superconducting tunnel junction detector

نویسندگان

  • M. Ejrnaes
  • C. Nappi
  • R. Cristiano
چکیده

We study a class of superconductive radiation detectors in which the absorption of energy occurs in a long superconductive strip while the redout stage is provided by superconductive tunnel junctions positioned at the two ends of the strip. Such a device is capable both of imaging and energy resolution. In the established current scheme, well studied from the theoretical and experimental point of view, a fundamental ingredient is considered the presence of traps, or regions adjacents to the junctions made of a superconducting material of lower gap. We reconsider the problem by investigating the dynamics of the radiation induced excess quasiparticles in a simpler device, i.e. one without traps. The nonequilibrium excess quasiparticles can be seen to obey a diffusion equation whose coefficients are discontinuous functions of the position. Based on the analytical solution to this equation, we follow the dynamics of the quasiparticles in the device, predict the signal formation of the detector and discuss the potentiality offered by this configuration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics and energy distribution of nonequilibrium quasiparticles in superconducting tunnel junctions

We present a full theoretical and experimental study of the dynamics and energy distribution of nonequilibrium quasiparticles in superconducting tunnel junctions (STJ’s). STJ’s are often used for single-photon spectrometers, where the numbers of quasiparticles excited by a photon provide a measure of the photon energy. The magnitude and fluctuations of the signal current in STJ detectors are in...

متن کامل

Nonequilibrium and relaxation effects in tunnel superconducting junctions

A specific property of a planar tunnel junction with thin-film diffusive plates and long enough leads, typical for most of practical situations, is essential enhancement of its transmission coefficient compared to the bare transparency of the tunnel barrier [1, 2]. In voltage-biased junctions, this creates favorable conditions for strong nonequilibrium of quasiparticles in the junction plates a...

متن کامل

Relaxation and frequency shifts induced by quasiparticles in superconducting qubits

As low-loss nonlinear elements, Josephson junctions are the building blocks of superconducting qubits. The interaction of the qubit degree of freedom with the quasiparticles tunneling through the junction represents an intrinsic relaxation mechanism. We develop a general theory for the qubit decay rate induced by quasiparticles, and we study its dependence on the magnetic flux used to tune the ...

متن کامل

Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations.

We calculate the energy decay rate of Josephson qubits and superconducting resonators from nonequilibrium quasiparticles. The decay rates from experiments are shown to be consistent with predictions based on a prior measurement of the quasiparticle density n(qp) = 10/microm(3), which suggests that nonequilibrium quasiparticles are an important decoherence source for Josephson qubits. Calculatio...

متن کامل

Quantum partition noise in a superconducting tunnel junction

The theory of charge partition noise of quasiparticles in a superconducting tunnel junction is developed. The charge fluctuations are shown to have a significant contribution from partition noise that arises from the quantum superposition of the electron and hole character of the quasiparticles. These fluctuations are dominant at small bias voltage. The charge fluctuations are compared to the u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005